# INTERNSHIP PRESENTATION

# INTERNSHIP PRESENTATION

Biometry Hub Internship Alec McCallum 24/07/2020

# **ABOUT ME**







# WEEK 1

- Intro to R
- Intro to Experimental Design
- Talk: Russel (Functions and Programming)
- Talk: Pete (Tidyverse)
- Talk: Sam (Rmarkdown)

## INTRO TO R

- Rstudio console
- R Basics
- Variables, vectors, data frames
- More advanced functions
- Graphics

## INTRO TO R

Key Takeaways

- Always have good record keeping and data management, keep original files, back up your files
- Google everything you dont know
- Always be very accurate when typing, capitals and punctuation matter

- Completely Randomised Design
- Randomised Complete Block Design
- Latin Square Design
- Factorial RCBD

#### Completely Randomised Design

#aim- Yield response to N fertiliser #obs- 36 plots #arr- 6 rows x 6 col #trt- 6 #rep- 6 #des- CRD

#blk- NA

```
trt<-c(1:6)
rep<-6
```

#### Completely Randomised Design

| Source of Variation | df      |
|---------------------|---------|
| trt<br>Residual     | 5<br>30 |
|                     |         |
| Total               | 35      |



#### Randomised Complete Block Design

| Source of Variation | df     |
|---------------------|--------|
|                     | ====== |
| Block stratum       | 5      |
|                     |        |
| trt                 | 5      |
| Residual            | 25     |
|                     |        |
| Total               | 35     |

| 1       | 6- | 5- | 2<br>4- | 3-<br>M             | 2- | 1-  |
|---------|----|----|---------|---------------------|----|-----|
| 1       | 3  |    | 6       | 4                   | 2  | 5   |
| 2       | 3  | 5  | 4       | 6                   | 2  | Laj |
| 3       | 4  | 3  | (1)     | 6                   | 2  | 5   |
| 4<br>ol | 4  | 3  |         | 6                   | 5  | 2   |
| 5       | 6  | 2  | 5       | 3                   | a. | 4   |
| 6       | 3  | 5  | 4       |                     | 6  | 2   |
|         |    |    | 4       | Treatment<br>1<br>2 |    |     |

#### Latin Square Design

| Source of Variation | df     |
|---------------------|--------|
|                     | ====== |
| Row                 | 5      |
| Column              | 5      |
| trt                 | 5      |
| Residual            | 20     |
|                     |        |
| Total               | 35     |



#### Factorial RCBD

| Source of Variation | df          |
|---------------------|-------------|
| Rlock stratum       | ======<br>5 |
|                     |             |
| A                   | 2           |
| В                   | 1           |
| AB                  | 2           |
| Residual            | 25          |
|                     |             |
| Total               | 35          |

| - | A2 B1 | A2 B2 | A3 B2 | A2 B1 | A3 B2 | A2 B2 |
|---|-------|-------|-------|-------|-------|-------|
| - | A1 B2 |       | A3 B1 | A1 82 | A2 B1 | A3 B1 |
|   | A3 B2 | A3 B1 | A1 B1 | A2 B2 | A1 B2 | AT BT |
|   | AL BI | A2 B1 | A1 B2 | A3 B1 | A1 81 | A2 B1 |
|   | A1 B2 | A3 B1 | AT B1 | A2 B2 | A1 B2 | A3 82 |
| - | A2 B2 | A3 82 | A2 B1 | A3 82 | A3 B1 | A2 B2 |
|   | 4     | 2     | 3     | 4     | 5     | 6     |

Key Takeaways

- For every design write down: Aim, Observations, Arrangement, Treatments, Replicates, Design, Blocking Arrangement. It helps with creating the right design.
- A bad design can mean the data cannot be analysed accurately
- Look at residual degrees of freedom when choosing a design. Residual df should be greater than 12. Increasing the complexity of the design reduces the residual df.
- Keep in mind the constraints of the trial to get the most appropriate design, e.g. spatial trend in a field

## TALK: RUSSEL (FUNCTIONS AND PROGRAMMING)

- How to write functions in R
- How to manage complexity
- Euler Problems

### **EULER PROBLEM**

```
# The four adjacent digits in the 1000-digit number that have
# the greatest product are 9 x 9 x 8 x 9 = 5832.
# Find the thirteen adjacent digits in the 1000-digit number that
# have the greatest product.
# What is the value of this product?
```

```
options(scipen = 999)
```

```
value<-list()</pre>
```

```
value[[1]]<-</pre>
```

**c**("7316717653133062491922511967442657474235534919493496983520312

value[[2]]<-

**c** ("6222989342338030813533627661428280644448664523874930358907296

value[[3]]<-</pre>

[1] 23514624000

### **EULER PROBLEM**

```
# A Pythagorean triplet is a set of three natural numbers,
# For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
# There exists exactly one Pythagorean triplet for
# Find the product abc.
# total and range of values
total<-1000
range<-c(1:total)</pre>
# function to find triplets
triplet<- function(A,B) {</pre>
    C \leq -sort(A^2+B^2)
    if((C%%1)==0){
    return(c(A,B,C))
```

[1] 200 375 425 [1] 31875000

[1] TRUE TRUE TRUE

## TALK: PETE (TIDYVERSE)

- Useful for data management and cleaning to get the data into a table with the proper layout needed for analysis
- Easier to use and more versatile than Excel functions
- Don't try to memorise them all, just know where to find them
- e.g. pipe, gather, spread, separate, filter, arrange, select, group by, mutate, etc.

## TALK: SAM (RMARKDOWN)

Compared to Word:

- More fiddly and less user friendly when starting out
- Much easier to get consistent formatting throughout the document
- Easier to include plots and tables

## MORE KEY TAKEAWAYS

- Google Everything!
- Break complicated problems into simple, easy steps
- Don't need to memorise every function, just know that there is a function for almost everything and use Google to find it
- Important to write notes and comments in the code so you know what you did 3 months later and someone else can figure out what you did

# WEEK 2

- Workbook 10: Genstat -> R
- Meeting: Hotdesk
- Talk: Pete (ggplot)
- Stats PD @ Waite
- Talk: Wendy (Exact Permutation Tests)
- Talk: Mario (Bioinformatics)
- Talk: Mexiuan (Honours)
- Demonstration: Pete (Drones & Machine Learning)
- Talk: Sam (CV & Website)
- Website

- I found R is a bit easier to use than Genstat, there are way more resources online for R
- Took some time to get the right code



#### R ANOVA 1

#### Analysis of variance

Variate: Gain

| Source of variation | d.f.     | <b>s.s.</b>        | <u>m.s.</u> | <mark>۷.۲.</mark> | F pr. |
|---------------------|----------|--------------------|-------------|-------------------|-------|
| Diet                | 5        | 4612.9             | 922.6       | 4.30              | 0.002 |
| Residual<br>Total   | 54<br>59 | 11586.0<br>16198.9 | 214.6       |                   |       |

Genstat ANOVA 1

|             | Gain  | groups |
|-------------|-------|--------|
| Beef High   | 100.0 | a      |
| Pork High   | 99.5  | a      |
| Cereal High | 85.9  | b      |
| Cereal Low  | 83.9  | b      |
| Beef Low    | 79.2  | b      |
| Pork Low    | 78.7  | b      |

#### R LSD

Fisher's unprotected least significant difference test Diet

|             | Mean   |   |
|-------------|--------|---|
| Pork Low    | 78.70  | а |
| Beef Low    | 79.20  | а |
| Cereal Low  | 83.90  | а |
| Cereal High | 85.90  | а |
| Pork High   | 99.50  | b |
| Beef High   | 100.00 | b |
|             |        |   |

Genstat LSD



R Means Plot vs Genstat Means Plot of weight gain in rats with different diets



R Dotplot vs Genstat Dotplot of weight gain in rats with different diets

## **MEETING: HOTDESK**

- Have a clear idea of what the experiment is, the goal and the limitations
- Consult with a statistician to make sure the design is right, they ask questions about things you haven't thought about

## TALK: PETE (GGPLOT)

- hard to use at first
- more versatile than excel but a bit less user friendly
- easier to import into documents with rmarkdown

### TALK: PETE (GGPLOT)







## **STATS PD @ WAITE**

#### Takeaways

- Find all sources of errors
- Understand the whole structure
- Use simplified examples for better understanding
- Analyse in different ways and compare outputs for differences or consistency
- Consult an expert

## TALK: WENDY (EXACT PERMUTATION TESTS)

- Take every permutation of the responses and assign them to experimental units
- Calculate a test statistic for each permutation
- Create a distribution from these permutations
- Take all the permutations that have a test statistic equal to or more extreme than the observations and determine how likely the observations are to occur
- Makes no assumptions of the underlying distribution of observations
- Can use any test statistic

## **TALK: MARIO (BIOINFORMATICS)**

- Exists as a link between biology and statistics therefore need to have a good understanding of the biology and the statistics behind the experiments
- Determine which genes have a statistically higher or lower gene expression in a treatment compared to a control
- Function of these genes and any genes related to this gene also need to be determined
- This information directly helps the biologist by telling them which genes to study further

## **TALK: MEIXUAN (HONOURS)**

- Find the statistical model that best describes canola seedling emergence
- Time management

## DEMONSTRATION: PETE (DRONES + MACHINE LEARNING)

- Using drones and machine learning to count and map Faba bean seedling emergence
- Same concept can apply to different crops
- Real world applications for monitoring crops objectively, not relying on observations in one corner of the paddock

## TALK: SAM (CV AND WEBSITE)

- Sell yourself
- Keep online profiles consistent and up-to-date

www.alecmccallum.netlify.com

## **KEY TAKEAWAYS**

- ggplot is way more versatile than excel
- For future projects: Have a clear idea of what the project is, its limitations and constraints and how big the project will be. That will make it easier to design.
- There is a huge variety in areas of statistics with realworld applications

# WEEK 3

- Talk: Beata (Genetic Association Analysis)
- Talk: Paul (Personal Experiences)
- Meeting: Olena (Honours)

## TALK: BEATA (GENETIC ASSOCIATION ANALYSIS)

- Determining which markers/SNPs have a significant effect on a trait
- Helps researchers know what genes to do more research on
- Helps breeders in marker-assisted and genomic selection
- Related well to the Plant Breeding course

## TALK: PAUL (PERSONAL EXPERIENCES)

Mistakes from researchers

- Not designing the experiment properly
- Trying to make the data analysis fit their preconceived idea
- Getting help on the analysis just before the due date because the experiment didn't work

## **MEETING: OLENA (HONOURS)**

- Doing Honours will make me more prepared for a job and more competitive in the job market
- The agricultural industry wants and needs people to be trained in data management and analytics
- Continually learn and develop new skills

# REFLECTION

Skills

- Coding in R
- Engaging with speakers
- Problem Solving
- Self-motivation

# THANKS FOR LISTENING :)

#### Here is my puppy, Fred.

